Shintani theta lifts of harmonic Maass forms

نویسندگان

چکیده

We define a regularized Shintani theta lift which maps weight $2k+2$ ($k \in \mathbb {Z}, k \geq 0$) harmonic Maass forms for congruence subgroups to (sesqui-)harmonic of $3/2+k$ the Weil representation an even lattice signature $(1,2)$. show that its Fourier coefficients are given by traces CM values and cycle integrals input form. Further, is related via $\xi$-operator Millson studied in our earlier work. use this connection construct $\xi$-preimages Zagierâ??s $1/2$ generating series singular moduli some Ramanujanâ??s mock functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta-lifts of Maass Waveforms

Let O be an arbitrary order in an indeenite quaternion division algebra over Q. If O 1 is the group of elements in O with norm equal to 1, and H the complex upper half-plane, then X O := O 1 nH is a compact Riemann surface. Furthermore, let ? 0 (d) SL 2 (Z) be the Hecke congruence group of level d. Then X d := ? 0 (d)nH is a non-compact Riemann surface with nite volume. Let be the hyperbolic La...

متن کامل

Locally Harmonic Maass Forms and the Kernel of the Shintani Lift

In this paper we define a new type of modular object and construct explicit examples of such functions. Our functions are closely related to cusp forms constructed by Zagier [37] which played an important role in the construction by Kohnen and Zagier [26] of a kernel function for the Shimura and Shintani lifts between half-integral and integral weight cusp forms. Although our functions share ma...

متن کامل

Algebraicity of Harmonic Maass Forms

In 1947 D. H. Lehmer conjectured that Ramanujan’s tau-function never vanishes. In the 1980s, B. Gross and D. Zagier proved a deep formula expressing the central derivative of suitable Hasse-Weil L-functions in terms of the Neron-Tate height of a Heegner point. This expository article describes recent work (with J. H. Bruinier and R. Rhoades) which reformulates both topics in terms of the algebr...

متن کامل

Coefficients of Harmonic Maass Forms

Harmonic Maass forms have recently been related to many different topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating functions, Borcherds products, and central values and derivatives of quadratic twists of modular L-functions. Motivated by these connections, we obtain exact formulas for the coefficients of harmonic Maass forms of non-positive weight, and we obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8265